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Abstract—This paper aims to develop an integrated model-
ing framework that combines generation, load, weather, and
renewable sources for comprehensive electric grid analysis and
simulations. Such a framework can support better forecasting
accuracy and enable more accurate long-term grid planning,
ultimately enhancing grid resilience and ensuring sustainable
growth of the grid. This is motivated by a rise in load demand that
has become increasingly unpredictable due to new types of loads
such as Al datacenters, Bitcoin mining, and Electric Vehicles
(EV). These loads reduce the effectiveness of traditional load
forecasting methods, suggesting the development of more flexible
and diverse forecasting models that consider variability under
different weather conditions. Simultaneously, many industries are
adopting sustainability policies for environmental benefits and
lower costs by integrating renewable energy sources like wind
and solar, which are inherently weather-dependent and difficult
to forecast. These trends highlight the growing importance of
incorporating weather analysis into both load and generation
forecasting to maintain grid stability.

Index Terms—Renewable Energy, Load Demand, Weather
Analysis, Comprehensive Simulation Model

I. INTRODUCTION AND MOTIVATION

Electrification is widely regarded as the most significant
engineering advancement of the 20th century, fundamentally
shaping modern life [1]. Electricity powers everything from
household appliances to large-scale manufacturing machinery,
driving rapid technological advancements and fueling the
Fourth Industrial Revolution. However, this rapid progress has
brought considerable environmental challenges, primarily due
to the heavy dependence on fossil fuels such as natural gas and
coal. Climate change, largely driven by carbon emissions from
these traditional energy sources, represents the most urgent of
these challenges.

In response, organizations worldwide are adopting eco-
friendly policies aimed at transitioning from fossil fuels to
renewable energy sources. Solar, wind, and other renewable re-
sources provide promising alternatives, significantly reducing
carbon emissions. However, renewable energy generation de-
pends heavily on weather conditions. For instance, solar power
decreases on cloudy days, and wind power is viable only
when wind speeds fall within optimal ranges. This variability
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introduces unique challenges for integrating renewable energy
into the power grid. Consequently, analyzing power grids
under various weather conditions is essential for improving
forecasts of generation output and ensuring grid stability. This
analysis supports the development of a sustainable energy
system that meets rising power demands while reducing carbon
emissions and mitigating climate change impacts.

Renewable energy continues to gain importance across
the United States, becoming a crucial component of power
generation [3]. For instance, on February 3, 2025, at 10:29
AM, solar and wind contributed 60 percent of total power gen-
eration within the Electric Reliability Council of Texas (ER-
COT), highlighting the substantial role of renewable energy in
contemporary power grids [4]. As renewable energy’s share
grows, traditional resource adequacy studies must account for
resource variability to ensure grid reliability and resilience.

Simultaneously, the adoption of Electric Vehicles (EVs)
is rapidly increasing, leading to further growth in electricity
demand. Therefore, power system management and planning
must prioritize grid reliability and resilience, particularly
during extreme weather events. Grid reliability comprises
two main components: adequacy—the system’s ability to
consistently meet demand despite outages—and operational
reliability, which refers to the grid’s capacity to manage
sudden disturbances without blackouts or equipment damage.
Resilience involves the grid’s ability to cope with and quickly
recover from outages, minimizing impact and preparing for
future challenges [5].

Accurate weather analysis across diverse scenarios is cru-
cial for maintaining a dependable power system, effectively
responding to outages, and preventing future disruptions. Re-
cent efforts to improve weather forecasting accuracy include
introducing the new “pww” file format [6] and developing the
Power Flow Weather (PFW) model [7].

This paper presents an integrated modeling framework
designed to simulate and analyze power grid performance,
emphasizing wind and solar energy generation. The research
leverages Energy Information Administration (EIA) 860 data
to create case files and employs the PFW model to simulate
various weather scenarios using the PowerWorld software
tool, specifically applied to the Texas grid. By evaluating
renewable power generation potential under different weather
events and comparing these outputs against load data, the study
assesses the ability of renewable sources to meet electricity



demand. This analysis helps inform strategies for managing
increased loads from EVs and other sources. Ultimately,
accurate weather scenario simulations will enhance forecasting
precision for both power generation and demand, thus improv-
ing grid resilience, minimizing outage risks, and ensuring a
stable electricity supply despite rising demand and challenging
weather conditions.

II. METHODOLOGIES
A. EIA 860 CASE

This study primarily focuses on generator output under
various weather scenarios, making generator data a key factor
having significant impact on simulation accuracy. The syn-
thetic grid case is commonly used in power system research
because it represents the key features of real power grids
without revealing sensitive information [8]. However, in this
study, synthetic grids are not suitable, as the generator data
differs from real-world generator information. Therefore, this
study uses the EIA-860 case with data from the U.S. Energy
Information Administration (EIA) rather than a synthetic grid
case. The EIA-860 dataset, which are publicly accessible,
includes details on electrical generators with a minimum
capacity of one megawatt across the United States. This
dataset includes several schedules: Schedule 1 provides utility
data, Schedule 2 offers plant details, including geographic
coordinates, and Schedule 3 contains generator information,
with further specifics on wind turbine and solar cell models
[9]. Although there are also Schedule 4 and Schedule 6, we
mostly utilize Schedule 1, Schedule 2, and Schedule 3. The
EIA-860 data are particularly helpful because Power Flow
Weather (PFW) models are used for simulations, where accu-
rate generator data are crucial for reliable results. Furthermore,
dataset’s structure is split into utilities, plants, units, and by US
states, allowing to align with power flow structures. The next
step involves building the case for simulation in PowerWorld
using this well-organized dataset. A simplified procedures
can be outlined as follows: first, define areas using utility
data; then create substations from plant data, establish zones,
and set up buses with plant data. Generators are then added
based on generator data, followed by connecting buses through
transmission lines. Lastly, Power Flow Weather (PFW) models
are placed using generator information. Detailed procedures
for these steps are thoroughly explained in [9].

B. Power Flow Weather (PFW) Models

PFW models, like stability models, are used to represent
components of the power system, such as generators, enabling
analysis of the behavior of the system under various condi-
tions. They are especially useful for integrating environmental
inputs (ENI) into power system analysis, allowing for an
accurate evaluation of how various conditions impact power
flow across the grid. The current simulation model does not
account for the characteristics of solar energy. As shown in
Figure 1, two simulation results are compared using the same
input data: the blue curve represents the outcome without the
PFW model (the existing approach), while the other curve

reflects the results when the PFW model is applied. These
comparisons highlight the effect of the PFW model on gen-
eration output. In practice, solar power production follows a
natural cycle—beginning around 6 AM, peaking near midday,
and gradually tapering off until reaching zero after 7 PM. By
contrast, the simulation without the PFW model unrealistically
indicates constant high generation throughout the day. Incor-
porating the PFW model produces a more realistic distribution
of generation output, emphasizing its importance for accurate
power flow analysis.
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Fig. 1. Generation output graph with PFW and without PFW

Although there are numerous fuel types, this paper focuses
primarily on wind and solar. Each PFW model has unique
input requirements. For instance, the wind model needs six in-
puts: AllowTurnOff, which permits turbine shutdown; Allow-
TurnOn, which allows turbine turn on; MWMax, the maximum
power output in megawatts; Hubsclar, a factor that adjusts
the turbine’s hub height for performance; DefaultWindMS, the
default wind speed in meters per second; and HubHeightM,
the height of the turbine hub in meters. In solar model, there
are more inputs than wind, but the main inputs would be
represented as Installed Capacity, which the maximum power
the solar system can generate; Type of Tracking, which the
mechanism for tracking sunlight(fixed or movalbe); Azimuth
and Title Angle, which the orientation and angle of the solar
panels; and sky diffuse, which the amount of sunlight scattered
in the atmosphere. More detailed explanations can be found in
[10]. Before running weather simulations with PFW models, it
is essential to classify each model according to generator data.
For example, as illustrated in Figure 2, the power curve varies
with wind speed in wind models. In PowerWorld, there are
six different wind classes, but primarily four are used: Wind
Class 1 for high wind, Wind Class 2 for medium wind, Wind
Class 3 for low wind, and Wind Class 4 for very low wind.
In the solar model, there are only two types: SolarPVBasicl
and SolarPVBasic2. We primarily use SolarPVBasic2 as it is
the most recent model.

C. Choosing Weather Scenarios

This paper utilizes PowerWorld’s "Time Step Simulation”
tool to simulate various weather scenarios. For Time Step
Simulation, PowerWorld requires files in either ”tsb” or "pww”
formats. This study uses the useful format called "pww” as
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Fig. 2. Power Curves for PFW models [7]

it can be directly loaded into PowerWorld, enabling direct
inclusion of weather measurements in power flow and optimal
power flow analyses [6]. With this convenient and efficient
file format, we can choose the weather scenarios significantly
affecting electric gird. Four weather scenarios are utilized
in this study. First, one of weather scenarios this paper use
is drought case, more perceisly renewable drought. While
drought definitions can vary, common definition is classified
when resource availability remains below a certain threshold
for a prolonged period [11]. In this study, we classify a
drought as occurring when generator output drops below 25
percent of the average power output over the past 80 years,
and we track its duration. Here is a brief overview of the
data acquisition process. Our research team has historical
pww files covering the years from 1940 to 2024, enabling
us to simulate hourly renewable generator outputs for each
day over the last 80 years. Although solar panels and wind
turbines were not widely deployed in earlier decades—such
as in 1945—our simulations assume that the current level of
renewable energy infrastructure existed at that time. However,
the generation output is based on the actual weather conditions
recorded for each historical date. We then compute the average
hourly output over the 80-year period and compare it to the
actual output at corresponding dates and times. More details
methodological details are available in [12]. If the actual
output is less than 25 percent of the historical average, it is
classified as a drought, and its duration is recorded. For this
study, we focus on one of the longest droughts identified in
Texas. Additionally, analyzing weather conditions with strong
winds is crucial since wind turbines operate efficiently only
within a specific wind speed range. Identifying periods of
lower efficiency can provide valuable insights for managing
extreme weather events, such as winter storms. Therefore,
the second and third weather scenarios include simulations of
winter storms “Uri” and “Elliott. The final scenario integrates
a winter storm with a weather drought, this time using a
35 percent threshold, to analyze renewable energy output
shortfalls during the storm.

III. RESULTS
A. One Of The Longest Drought Period In Texas

The first case examines the impact of the longest drought
recorded in Texas over the past 80 years. This drought period
was identified using the methodology outlined above, which
leverages historical weather data to pinpoint extended periods
of minimal generation. To evaluate how such extreme con-
ditions affect power generation, Time Step Simulation were
conducted in PowerWorld using the EIA-860 case for the
corresponding year. The generated graph, shown in Figure 3,
provides a visual representation of generator output during
this prolonged drought event. To quantify the effects of the
drought on electricity generation, historical generator output
data from the same dates over the past 80 years was used
as a baseline for comparison. As expected, generator output
during the drought was significantly lower than the long-term
historical average. Notably, during the drought, the maximum
generator output reached only 5601.5 MW. The minimum
recorded output dropped to just 1758.83 MW, demonstrat-
ing the severe limitations in power production during these
extreme conditions. This substantial variability in electricity
generation suggests that droughts can pose a serious risk
to grid stability, potentially leading to power shortages if
proper mitigation measures are not in place. These findings
emphasize the need for improved energy storage solutions,
diversified generation sources, and enhanced grid flexibility to
compensate for generation losses during prolonged droughts.
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Fig. 3. Renewable Generation Output During One Of The Longest Drought
Period In Texas

B. Winter Storm “Uri”

The following case study analyzes the impact of winter
storm “Uri,” which struck Texas in February 2021 and caused
widespread power outages. This simulation follows the same
methodology as the previous case but with the PWW file corre-
sponding to the ”Uri” period, which occurred from February
13 to 17, 2021. The resulting data, illustrated in Figure 4,
offers a clear visualization of the performance of generation
resources under extreme winter conditions. As expected, gen-
erator output varied significantly throughout the duration of the
storm. During the peak of ”Uri,” the maximum recorded gener-
ator output reaches 22,666.35 MW. However, during the most



extreme conditions, the minimum output is 3,187 MW. This
drastic fluctuation had severe implications for grid stability,
as Texas’s electricity demand remained high while generation
capacity fluctuated. The disparity between available generation
and actual demand likely contributed to widespread blackouts,
leaving millions without power for extended periods. This
analysis underscores the challenges that renewable energy
sources such as wind and solar are particularly vulnerable to
severe winter storms due to factors like frozen wind turbine
blades and reduced solar irradiance. The findings highlight
the necessity of enhancing grid resilience through improved
infrastructure, increased energy storage capacity, and better
forecasting models.
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Fig. 4. Renewable Generation Output During Winter Storm “Uri”
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Fig. 5. Effect of Wind Speed On Wind Turbine Generation During Winter
Storm “Uri”

Figure 5 shows the relationship between generation output
and wind speed. Up to a wind speed of 9.30 m/s, the wind
turbine generates electricity efficiently, allowing the output
to reach the 80-year renewable generation level presented in
Figure 4. However, once wind speed exceed 9.30 m/s, the gen-
eration output drops sharply to around 3000 MW. As the wind
speed continues to rise, the output decreases again, following
a similarly steep decline observed during the strongest winds
of the winter storm. Given that most wind classes in this case
are Wind Class 2 and Wind Class 3—where the average wind
speeds at hub height are 8.5 m/s and 7.5 m/s, respectively—the

trend of Figure 5 aligns with expectations, as the turbine often
operates above these average speeds in the simulation. While
other factors also affect wind generation output, wind speed
is a critical factor, highlighting the importance of analyzing
how much wind turbines can withstand and operate efficiently
during extreme weather conditions with strong winds.

C. Winter Storm “Elliot”

The third case analyzes the impact of a different winter
storm, “Elliot”, which occurred in 2022. As in the previous
cases, the analysis involved using the pww file for the “Elliot”
period. The resulting graph, presented in Figure 6, visually
illustrates generator output during this extreme weather event.
As anticipated, the generator output varied significantly during
most of the storm, with a maximum output of 36,023.48
MW and a minimum output of 1,644.36 MW. According to
ERCOT’s report [13], the peak demand on December 22, 2022,
reached 73,685 MW, recorded on August 20, 2024. Comparing
these values reveals that the maximum output in the simulation
is nearly half of the peak load demand reported by ERCOT.
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Fig. 6. Renewable Generation Output During Winter Storm “Elliot”
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Fig. 7. Effect Of Wind Speed On Wind Turbine Generation During Winter
Storm “Elliot”

Unlike other case, the graph shows that during the storm,
generator output briefly exceeded the 80-year average—likely
due to strong winds boosting wind energy production. How-
ever, once wind speeds surpassed turbine limits, output
dropped sharply due to shutdowns or damage. This illustrates



how extreme winds can both enhance and disrupt renewable
energy systems. Figure 7 shows a similar trend to Winter
Storm “Uri”: when wind speeds exceed 10.85 m/s, output
drops sharply to around 1600 MW, remaining below the 80-
year average thereafter. Notably, while peak output during
“Elliot” was over 14,000 MW higher than during ~Uri”, the
minimum was nearly twice as low. This suggests “Elliot” had
stronger winds that often exceeded optimal turbine ranges,
causing performance drops. These findings highlight the oper-
ational challenges wind turbines face in extreme weather and
the need to ensure resilience to avoid outages like those seen
in ”Uri” and “Elliot”.

D. Renewable energy drought during winter storm

The final case examines the extreme case scenario, which
occurs during one of the longest drought periods coinciding
with the winter storm “Uri”. In this extreme situation, a
higher threshold of 35 percent was used, rather than the
previous 25 percent threshold, to better capture the severity
of the conditions. By identifying one of the most extended
drought periods during the winter storm, the analysis was
conducted similarly to the Winter Storm “Uri” case but
with the adjusted threshold to reflect the extreme nature of
the combined event. The resulting graph, shown in Figure
8, visually represents the generator performance during this
extreme case. As seen in the graph, the maximum generator
output in this case reached 6557.16 MW, while the minimum
output plummeted to 4408.88 MW. This drastic reduction in
generation output highlights the vulnerability of the power
grid under such combined extreme weather conditions. These
output levels would have put immense stress on the grid,
especially considering its heavy reliance on wind and solar
renewable energy sources. The absence of dispatchable backup
sources left grid operators with few options, increasing the
risk of widespread outages. This situation highlights the need
for a diversified energy mix, resilient infrastructure, and better
planning to address the combined challenges of high demand
and renewable intermittency.
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Fig. 8. Renewable Generation Output During Extreme Case Scenario

E. Comparing generation output with historical load demand

After evaluating the substantial influence of weather on the
electric grid, the next step involves analyzing how much of the

load demand can be met by the renewable generation output
with copper plate model. This analysis utilizes historical load
data from ERCOT, specifically from 2002 to 2024, as the study
focuses on the Texas electric grid. Given the annual increase
in load demand, it is essential to account for load inflation.
This is done by calculating the average load for each year and
determining the inflation ratio by dividing each year’s average
load by the average load in the latest year, which are 2024 in
this study. Each load value is then adjusted using this inflation
ratio. This approach ensures that the comparison between past
and present conditions remains accurate, preventing underes-
timation of future electricity needs.

With the necessary data gathered, two typical cases are
chosen, and the first scenario under examination is a renewable
drought. This period represents conditions where renewable
generation is at its lowest, directly impacting the grid’s ability
to meet demand. Figure 9 illustrates the share of renew-
able energy in meeting the load demand during a prolonged
drought scenario. The data reveals that renewable sources
contributed an average of approximately 8.5 percent, with a
peak of around 13 percent and a low of about 5 percent.
These low contribution levels highlight a significant shortfall
in generation capacity relative to demand, underscoring the
challenges posed by the variability of wind and solar resources.
As renewable adoption continues to expand, ensuring grid
reliability will require the need for complementary solutions,
such as long-duration energy storage and flexible, dispatchable
generation, compensating for such deficits during extreme
weather conditions.
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Fig. 9. Renewable Generation Output During Extreme Case Scenario

The next case to examine is the ”Uri” case, shown in Figure
10. It presents the share of renewable energy in meeting load
demand during winter storm “Uri”. On average, renewables
supplied approximately 21.37 percent of the load, with the
lowest contribution dropping to around 6 percent. While
this performance is notably better than during the drought
scenario, the data still reveals a substantial gap between
renewable output and actual demand. These results highlight
the limitations of relying solely on wind and solar, particularly



during extreme weather events. To address this, long-term
solutions are needed beyond simply increasing renewable
capacity or depending on EV batteries during emergencies
[14]. A more sustainable strategy includes investing in large-
scale energy storage, expanding transmission infrastructure to
move power from resource-rich areas to where it’s needed
most, and adopting advanced forecasting methods. Together,
these enhancements can improve system resilience and ensure
a stable, reliable energy supply even during severe disruptions
like Winter Storm “Uri”.
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Fig. 10. Renewable Generation Output During Extreme Case Scenario

IV. CONCLUSION AND FUTURE WORK

With the advent of the fourth industrial revolution and the
transition from traditional energy sources to renewable energy,
weather analysis has become increasingly essential for the suc-
cessful integration of renewable energy into electric grid plan-
ning. As anticipated, renewable energy sources, particularly
wind and solar, are highly dependent on weather conditions,
making it crucial to forecast generation output under different
weather scenarios and assess whether it can meet load demand.
This study leverages EIA 860 data, Power Flow Weather
Models, and extreme weather scenarios, including renewable
droughts, to provide a comprehensive modeling framework
for simulating and analyzing electric grid performance, with a
focus on Texas. The simulation results, compared to historical
load data, show that weather variations have a significant
impact on the Texas electric grid. Rather than relying on short-
term solutions like increasing the number of solar panels and
wind turbines, the study emphasizes the need for long-term
solutions in grid planning such as large-scale battery storage,
enhanced transmission networks, and improved grid flexibility.

Future work will focus on identifying days based on weather
conditions, such as those with high or low renewable gen-
eration or extreme load levels, rather than selecting specific
historical dates. This method better reflects grid operation
planning by focusing on high-load, low-renewable scenarios
rather than solely depending on historical storm dates. By
doing so, the analysis will become more data-driven and
realistic, capturing actual worst-case scenarios for grid stress,

as weather conditions can vary significantly across different
years.
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